UFO长啥样?–Python数据分析来告诉你
前言
真心讲,长这么大,还没有见过UFO长啥样,偶然看到美国UFO报告中心有关于UFO时间记录的详细信息,突然想分析下这些记录里都包含了那些有趣的信息,于是有了这次的分析过程。
当然,原始数据包含的记录信息比较多,我只是进了了比较简单的分析,有兴趣的童鞋可以一起来分析,别忘了也给大家分享下您的分析情况哦。
本次分析的主要内容涉及以下几个方面:
- UFO长啥样?
- UFO在哪些地方出现的次数较多?
- UFO在哪些年份出现的次数较多?
- 热力图同时显示哪些州和哪些年UFO出现次数最多
import pandas as pd import numpy as np import matplotlib.pyplot as plt % matplotlib inline plt.style.use('ggplot')
1 数据整理与清洗
df = pd.read_csv('nuforc_events.csv')
print(df.shape) # 查看数据的结构 print(df.head())
(110265, 13) Event_Time Event_Date Year Month Day Hour Minute \ 0 2017-04-20T14:15:00Z 2017-04-20 2017.0 4.0 20.0 14.0 15.0 1 2017-04-20T04:56:00Z 2017-04-20 2017.0 4.0 20.0 4.0 56.0 2 2017-04-19T23:55:00Z 2017-04-19 2017.0 4.0 19.0 23.0 55.0 3 2017-04-19T23:50:00Z 2017-04-19 2017.0 4.0 19.0 23.0 50.0 4 2017-04-19T23:29:00Z 2017-04-19 2017.0 4.0 19.0 23.0 29.0 City State Shape Duration \ 0 Palmyra NJ Other 5 minutes 1 Bridgeview IL Light 20 seconds 2 Newton AL Triangle 5 seconds 3 Newton AL Triangle 5-6 minutes 4 Denver CO Light 1 hour Summary \ 0 I observed an aircraft that seemed to look odd. 1 Bridgeview, IL, blue light. ((anonymous report)) 2 Silent triangle UFO. 3 My friend and I stepped outside hoping to catc... 4 Moved slow but made quick turns staying and ci... Event_URL 0 http://www.nuforc.org/webreports/133/S133726.html 1 http://www.nuforc.org/webreports/133/S133720.html 2 http://www.nuforc.org/webreports/133/S133724.html 3 http://www.nuforc.org/webreports/133/S133723.html 4 http://www.nuforc.org/webreports/133/S133721.html
- 由于存在许多包含NaN的数据信息,在进行分析之前,先用dropna()方法去除包含NaN的行数
df_clean = df.dropna() print(df_clean.shape) # 查看去除Nan后还有多少行 print(df_clean.head())
(95004, 13) Event_Time Event_Date Year Month Day Hour Minute \ 0 2017-04-20T14:15:00Z 2017-04-20 2017.0 4.0 20.0 14.0 15.0 1 2017-04-20T04:56:00Z 2017-04-20 2017.0 4.0 20.0 4.0 56.0 2 2017-04-19T23:55:00Z 2017-04-19 2017.0 4.0 19.0 23.0 55.0 3 2017-04-19T23:50:00Z 2017-04-19 2017.0 4.0 19.0 23.0 50.0 4 2017-04-19T23:29:00Z 2017-04-19 2017.0 4.0 19.0 23.0 29.0 City State Shape Duration \ 0 Palmyra NJ Other 5 minutes 1 Bridgeview IL Light 20 seconds 2 Newton AL Triangle 5 seconds 3 Newton AL Triangle 5-6 minutes 4 Denver CO Light 1 hour Summary \ 0 I observed an aircraft that seemed to look odd. 1 Bridgeview, IL, blue light. ((anonymous report)) 2 Silent triangle UFO. 3 My friend and I stepped outside hoping to catc... 4 Moved slow but made quick turns staying and ci... Event_URL 0 http://www.nuforc.org/webreports/133/S133726.html 1 http://www.nuforc.org/webreports/133/S133720.html 2 http://www.nuforc.org/webreports/133/S133724.html 3 http://www.nuforc.org/webreports/133/S133723.html 4 http://www.nuforc.org/webreports/133/S133721.html
- 由于1900年以前的数据较少,这里选择1900年以后的数据来进行分析,如下:
df_clean = df_clean[df_clean['Year']>=1900] # 获取1900年以后的数据来进行分析
- 查看导入的每列数据的数据类型,通过运行结果,可以看到,“Event_Date”列并不是日期类型,因此要将之转换。
- 可以采用pd.to_datetime()方法来操作
df_clean.dtypes
Event_Time object Event_Date object Year float64 Month float64 Day float64 Hour float64 Minute float64 City object State object Shape object Duration object Summary object Event_URL object dtype: object
- 用pd.to_datetime()方法来将str格式的日期转换成日期类型
pd.to_datetime(df_clean['Event_Date']) # 1061-12-31年不能显示 # OutOfBoundsDatetime: Out of bounds nanosecond timestamp: 1061-12-31 00:00:00 df_clean.dtypes
Event_Time object Event_Date object Year float64 Month float64 Day float64 Hour float64 Minute float64 City object State object Shape object Duration object Summary object Event_URL object dtype: object
2 UFO长啥样?
- 按UFO出现的形状类型来分析,统计不同类型的UFO出现的次数
s_shape = df_clean.groupby('Shape')['Event_Date'].count() print(type(s_shape)) s_shape.sort_values(inplace=True) s_shape
<class 'pandas.core.series.Series'> Shape Changed 1 Hexagon 1 Pyramid 1 Flare 1 Round 2 Crescent 2 Delta 7 Cross 287 Cone 383 Egg 842 Teardrop 866 Chevron 1187 Diamond 1405 Cylinder 1495 Rectangle 1620 Flash 1717 Cigar 2313 Changing 2378 Formation 3070 Oval 4332 Disk 5841 Sphere 6482 Other 6658 Unknown 6887 Fireball 7785 Triangle 9358 Circle 9818 Light 20254 Name: Event_Date, dtype: int64
剔除特殊情况
- 剔除出现次数少于10次的类型
- 剔除“Unknown”及“Other”类型
s_shape_normal = s_shape[s_shape.values>10] s_shape_normal
Shape Cross 287 Cone 383 Egg 842 Teardrop 866 Chevron 1187 Diamond 1405 Cylinder 1495 Rectangle 1620 Flash 1717 Cigar 2313 Changing 2378 Formation 3070 Oval 4332 Disk 5841 Sphere 6482 Other 6658 Unknown 6887 Fireball 7785 Triangle 9358 Circle 9818 Light 20254 Name: Event_Date, dtype: int64
s_shape_normal = s_shape_normal[s_shape_normal.index.isin(['Unknown', 'Other'])==False] s_shape_normal
Shape Cross 287 Cone 383 Egg 842 Teardrop 866 Chevron 1187 Diamond 1405 Cylinder 1495 Rectangle 1620 Flash 1717 Cigar 2313 Changing 2378 Formation 3070 Oval 4332 Disk 5841 Sphere 6482 Fireball 7785 Triangle 9358 Circle 9818 Light 20254 Name: Event_Date, dtype: int64
from matplotlib import font_manager as fm from matplotlib import cm labels = s_shape_normal.index sizes = s_shape_normal.values explode = (0.1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0.1) # "explode" , show the selected slice fig, axes = plt.subplots(figsize=(10,5),ncols=2) # 设置绘图区域大小 ax1, ax2 = axes.ravel() colors = cm.rainbow(np.arange(len(sizes))/len(sizes)) # colormaps: Paired, autumn, rainbow, gray,spring,Darks patches, texts, autotexts = ax1.pie(sizes, labels=labels, autopct='%1.0f%%',explode=explode, shadow=False, startangle=150, colors=colors, labeldistance=1.2,pctdistance=1.05, radius=0.95) # labeldistance: 控制labels显示的位置 # pctdistance: 控制百分比显示的位置 # radius: 控制切片突出的距离 ax1.axis('equal') # 重新设置字体大小 proptease = fm.FontProperties() proptease.set_size('xx-small') # font size include: ‘xx-small’,x-small’,'small’,'medium’,‘large’,‘x-large’,‘xx-large’ or number, e.g. '12' plt.setp(autotexts, fontproperties=proptease) plt.setp(texts, fontproperties=proptease) ax1.set_title('Shapes', loc='center') # ax2 只显示图例(legend) ax2.axis('off') ax2.legend(patches, labels, loc='center left', fontsize=9) # plt.tight_layout() # plt.savefig("pie_shape_ufo.png", bbox_inches='tight') plt.savefig('ufo_shapes.jpg') plt.show()
运行结果如下:
ufo_shapes.jpg
3 UFO在美国那些州(state)出现的次数比较多?
按”State”进行分组运算,统计ufo在各个州出现的次数
s_state = df_clean.groupby('State')['Event_Date'].count() print(type(s_state)) s_state.head()
<class 'pandas.core.series.Series'> State AB 438 AK 472 AL 930 AR 791 AZ 3488 Name: Event_Date, dtype: int64
将分析得到的结果进行可视化显示,如下:
fig, ax1 = plt.subplots(figsize=(12,8)) width = 0.5 state = s_state.index x_pos1 = np.arange(len(state)) y1 = s_state.values ax1.bar(x_pos1, y1,color='#4F81BD',align='center', width=width, label='Amounts', linewidth=0) ax1.set_title('Amount of reporting UFO events by State ') ax1.set_xlim(-1, len(state)) ax1.set_xticks(x_pos1) ax1.set_xticklabels(state, rotation = -90) ax1.set_ylabel('Amount') fig.savefig('ufo_state.jpg') plt.show()
运行结果如下:
ufo_state.jpg
从上图可看出,ufo在加州(CA)出现的总次数明显比其他地方多,难道是ufo偏爱加州人民?
4 UFO在哪些年份出现的次数较多?
按”Year”进行分组运算,统计ufo在各个年份出现的次数
# df_clean['Year'].astype(int) s_year = df_clean.groupby(df_clean['Year'].astype(int))['Event_Date'].count() print(type(s_year)) s_year.head()
<class 'pandas.core.series.Series'> Year 1905 1 1910 2 1920 1 1925 1 1929 1 Name: Event_Date, dtype: int64
将分析得到的结果进行可视化显示,如下:
fig, ax = plt.subplots(figsize=(12,20)) # fig, ax1 = plt.subplots(figsize=(12,8)) # fig, axes = plt.subplots(nrows=2, figsize=(12,8)) # fig, axes = plt.subplots(ncols=2, figsize=(18,4)) year = s_year.index y_pos = np.arange(len(year)) x_value = s_year.values ax.barh(y_pos, x_value,color='#4F81BD',align='center', label='Amounts', linewidth=0) ax.set_title('Amount of reporting UFO events by Year ') ax.set_ylim(-0.5, len(year)-0.5) ax.set_yticks(y_pos) ax.set_yticklabels(year, rotation = 0, fontsize=6) ax.set_xlabel('Amount') plt.savefig('ufo_year.jpg') plt.show()
运行结果如下:
ufo_year.jpg
从上图可看出,近年来UFO出现的报告次数最多
5 1997年以后的UFO事件分析
- 通过上述分析可看出,1997年以前,报告发现UFO的事件相对较少,下面将针对1997年以后的情况进行分析
df_97 = df_clean[(df_clean['Year']>=1997)] df_97['Year'] = df_97['Year'].astype(int) # df_97.astype({'Year':int}) print(df_97.shape) print(df_97.head())
(86041, 13) Event_Time Event_Date Year Month Day Hour Minute \ 0 2017-04-20T14:15:00Z 2017-04-20 2017 4.0 20.0 14.0 15.0 1 2017-04-20T04:56:00Z 2017-04-20 2017 4.0 20.0 4.0 56.0 2 2017-04-19T23:55:00Z 2017-04-19 2017 4.0 19.0 23.0 55.0 3 2017-04-19T23:50:00Z 2017-04-19 2017 4.0 19.0 23.0 50.0 4 2017-04-19T23:29:00Z 2017-04-19 2017 4.0 19.0 23.0 29.0 City State Shape Duration \ 0 Palmyra NJ Other 5 minutes 1 Bridgeview IL Light 20 seconds 2 Newton AL Triangle 5 seconds 3 Newton AL Triangle 5-6 minutes 4 Denver CO Light 1 hour Summary \ 0 I observed an aircraft that seemed to look odd. 1 Bridgeview, IL, blue light. ((anonymous report)) 2 Silent triangle UFO. 3 My friend and I stepped outside hoping to catc... 4 Moved slow but made quick turns staying and ci... Event_URL 0 http://www.nuforc.org/webreports/133/S133726.html 1 http://www.nuforc.org/webreports/133/S133720.html 2 http://www.nuforc.org/webreports/133/S133724.html 3 http://www.nuforc.org/webreports/133/S133723.html 4 http://www.nuforc.org/webreports/133/S133721.html
将数据按”Year”和”State”进行分组运算,如下:
df_amount_year = df_97.groupby(['Year', 'State'])['Event_Date'].size().reset_index() df_amount_year.columns = ['Year', 'State', 'Amount'] print(df_amount_year.head())
Year State Amount 0 1997 AB 6 1 1997 AK 5 2 1997 AL 8 3 1997 AR 10 4 1997 AZ 127
import seaborn as sns df_pivot = df_amount_year.pivot_table(index='State', columns='Year', values='Amount') f, ax = plt.subplots(figsize = (10, 15)) cmap = sns.cubehelix_palette(start = 1, rot = 3, gamma=0.8, as_cmap = True) sns.heatmap(df_pivot, cmap = cmap, linewidths = 0.05, ax = ax) ax.set_title('Amounts per State and Year since Year 1997') ax.set_xlabel('Year') ax.set_ylabel('State') ax.set_xticklabels(ax.get_xticklabels(), rotation=90) f.savefig('ufo_per_year_state.jpg')
ufo_per_year_state.jpg
- 上图中,颜色越深的地方,表示UFO事件报告的次数越多。
原始数据来源于美国的UFO事件报告中心。
更多精彩内容请关注公众号:
“Python数据之道”
原文地址:https://www.jianshu.com/p/3e2f90db8210
相关推荐
-
python模块之re正则表达式 python基础
2020-5-31
-
python使用魔法函数创建可切片类型 python基础
2019-9-18
-
浅谈python的对象的三大特性之继承 python基础
2019-5-27
-
Python导出MySQL数据库中表的建表语句到文件 python基础
2019-7-8
-
[Python]再学 socket 之非阻塞 Server python基础
2019-10-4
-
用KNN来进行验证码识别 python基础
2018-2-25
-
使用 opencv 将图片压缩到指定文件尺寸 python基础
2019-8-25
-
产品需求分析神器:KANO模型分析法 python基础
2019-2-16
-
Python:zip 函数的用法 python基础
2019-5-17
-
Virtualenv + SublimeText 的Python开发环境 python基础
2018-3-11