NiftyNet 数据预处理
使用NiftyNet时,我们需要先将图像数据和标签进行一次简单的处理,得到对应的.csv
文件。
对应文件格式为:
img.csv
image | path |
---|---|
img_name | img_path |
label.csv
label | path |
---|---|
img_label | img_path |
在此给出一个二分类的生成该文件的demo。首先,已经将两个类别的图片分别存储在两个文件夹中
demo
import pandas as pd import os # 生成 img.csv list_img = [] list_path = [] img_path = 'C:\\Users\\fan\\Desktop\\demo\\train\\ad' img_name = os.listdir(img_path) for i, item in enumerate(img_name): list_img.append(item) list_path.append(img_path + "\\" + item) img_path = "C:\\Users\\fan\\Desktop\\demo\\train\\cn" img_name = os.listdir(img_path) for i, item in enumerate(img_name): list_img.append(item) list_path.append(img_path + "\\" + item) data_frame = pd.DataFrame({'image': list_img, 'path': list_path}) data_frame.to_csv('C:\\Users\\fan\\Desktop\\demo\\train\\img_path.csv', index=False) # 生成label.csv list_label_name = [] list_label_path = [] label_path = 'C:\\Users\\fan\\Desktop\\demo\\train\\ad' label_name = os.listdir(label_path) for j, elem in enumerate(label_name): list_label_name.append(elem[0:2]) list_label_path.append(label_path + '\\' + elem) label_path = 'C:\\Users\\fan\\Desktop\\demo\\train\\cn' label_name = os.listdir(label_path) for j, elem in enumerate(label_name): list_label_name.append(elem[0:2]) list_label_path.append(label_path + '\\' + elem) print(list_label_name) label_dataframe = pd.DataFrame({'label': list_label_name, 'path': list_label_path}) label_dataframe.to_csv('C:\\Users\\fan\\Desktop\\demo\\train\\label.csv', index=False)
原文地址:https://www.cnblogs.com/zhhfan/p/10424489.html