预测python数据分析师的工资

python基础

浏览数:212

2019-4-20

AD:资源代下载服务

  前两篇博客分别对拉勾中关于 python 数据分析有关的信息进行获取(https://www.cnblogs.com/lyuzt/p/10636501.html)和对获取的数据进行可视化分析(https://www.cnblogs.com/lyuzt/p/10643941.html),这次我们就用 sklearn 对不同学历和工作经验的 python 数据分析师做一个简单的工资预测。由于在前面两篇博客中已经了解了数据集的大概,就直接进入正题。

一、对薪资进行转换

  在这之前先导入模块并读入文件,不仅有训练数据文件,还有一组自拟的测试数据文件。

import pandas as pd
import numpy as np
import matplotlib.pyplot as plt

train_file = "analyst.csv"
test_file = "test.csv"
# 读取文件获得数据
train_data = pd.read_csv(train_file, encoding="gbk")
train_data = train_data.drop('ID', axis=1)

test_data = pd.read_csv(test_file, encoding="gbk")
train_data.shape, test_data.shape

  为了更好地进行分析,我们要对薪资做一个预处理。由于其分布比较散乱,很多值的个数只有1。为了不造成过大的误差,根据其分布情况,可以将它分成【5k 以下、5k-10k、10k-20k、20k-30k、30k-40k、40k 以上】,为了更加方便我们分析,取每个薪资范围的中位数,并划分到我们指定的范围内。

salarys = train_data['薪资'].unique()     # 获取到薪资的不同值
for salary in salarys:
    # 根据'-'进行分割并去掉'k',分别将两端的值转换成整数
    min_sa = int(salary.split('-')[0][:-1])
    max_sa = int(salary.split('-')[1][:-1])
    # 求中位数
    median_sa = (min_sa + max_sa) / 2
    # 判断其值并划分到指定范围
    if median_sa < 5:
        train_data.replace(salary, '5k以下', inplace=True)
    elif median_sa >= 5 and median_sa < 10:
        train_data.replace(salary, '5k-10k', inplace=True)
    elif median_sa >= 10 and median_sa < 20:
        train_data.replace(salary, '10k-20k', inplace=True)
    elif median_sa >= 20 and median_sa < 30:
        train_data.replace(salary, '20k-30k', inplace=True)
    elif median_sa >= 30 and median_sa < 40:
        train_data.replace(salary, '30k-40k', inplace=True)
    else:
        train_data.replace(salary, '40k以上', inplace=True)

  处理完成后,我们可以将“薪资”单独提取出来当作训练集的 label。

y_train = train_data.pop('薪资').values

二、对变量进行转换

把category的变量转变成numerical表达式

  由于变量都不是numerical变量,在训练的时候计算机没办法识别,因此要对它们进行转换。 当我们用numerical来表达categorical的时候,要注意,数字本身有大小的含义,所以乱用数字会给之后的模型学习带来麻烦。于是我们可以用One-Hot的方法来表达category。

  pandas自带的get_dummies方法,可以一键做到One-Hot。 这里按我的理解解释一下One-Hot:比如说data[‘学历要求’]有’大专’, ‘本科’, ‘硕士’, ‘不限’。但data[‘学历要求’]==’本科’,则他可以用字典表示成这样{‘大专’: 0, ‘本科’:1, ‘硕士’:0, ‘不限’:0},用向量表示为[0, 1, 0, 0] 。

  在此之前,将测试集和训练集组合起来一起处理,稍微方便一点。

data = pd.concat((train_data, test_data), axis=0)
dummied_data = pd.get_dummies(data)
dummied_data.head()

  为了更好地理解 One-Hot ,把处理后的结果展示出来,得到的结果是这样的:

  

  当然,也可以用别的方法,比如用数字代替不同的值,这也是可以的。

  上次可视化分析的时候就已经知道数据集中不存在缺失值了,为了走一下流程并确保正确性,再次看一下是否有缺失值。

dummied_data.isnull().sum().sort_values(ascending=False).head(10)

            

  OK,很好,没有缺失值。这些值比较简单,不需要做那么多工作,但还是要先把训练集和测试集分开。

X_train = dummied_data[:train_data.shape[0]].values
X_test = dummied_data[-test_data.shape[0]:].values

三、选择参数

 1、DecisionTree(决策树)

from sklearn.tree import DecisionTreeClassifier
from sklearn.model_selection import cross_val_score
features_scores = []
max_features = [.1, .2, .3, .4, .5, .6, .7, .8, .9]
for max_feature in max_features:
    clf = DecisionTreeClassifier(max_features=max_feature)
    features_score = cross_val_score(clf, X_train, y_train, cv=5)
    features_scores.append(np.mean(features_score))
plt.plot(max_features, features_scores)

  这个过程主要是通过交叉验证获得使模型更好时的参数,交叉验证大概可以理解为,把训练集分成几部分,然后分别把他们设置为训练集和测试集,重复循环训练得到的结果取平均值。Emmm… 感觉这样讲还是有点笼统,还是上网查来得详细吧哈哈。

  然后我们得到的参数和值得关系如图所示:

          

  可见当 max_features = 0.2 时达到最大,大概有0.5418。

 2、ensemble(集成算法)

  集成学习简单理解就是指采用多个分类器对数据集进行预测,从而提高整体分类器的泛化能力。这里将采用sklearn 的 AdaBoostClassifier(adaptive boosting) 通过改变训练样本的权值,学习多个分类器,并将这些分类器进行线性组合,提高泛化性能。

from sklearn.ensemble import AdaBoostClassifier
n_scores = []
estimator_nums = [5, 10, 15, 20, 25, 30, 35, 40]
for estimator_num in estimator_nums:
    clf = AdaBoostClassifier(n_estimators=estimator_num, base_estimator=dtc)
    n_score = cross_val_score(clf, X_train, y_train, cv=5)
    n_scores.append(np.mean(n_score))
plt.plot(estimator_nums, n_scores)

          

  当 estimators=20 的时候,score最高,大概有0.544,虽然跟单个决策树的 score 的值相差不大,但总体还是有所提升。

四、建立模型

  参数选择完毕,就可以建立模型了。

dtc = DecisionTreeClassifier(max_features=0.2)
abc = AdaBoostClassifier(n_estimators=20)
# 训练
abc.fit(X_train, y_train)
dtc.fit(X_train, y_train)
# 预测
y_dtc = dtc.predict(X_test)
y_abc = abc.predict(X_test)

test_data['薪资(单个决策树)'] = y_dtc
test_data['薪资(boosting)'] = y_abc

          

  至于结果,总不可能预测得很完美,而且不同模型的结果也会有所不同,更何况它预测出来的结果是否符合常理还有待商榷,所以就把它当作一个小项目就好了,具体代码在这里:https://github.com/MaxLyu/Lagou_Analyze